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Numerical approach to the fractional Klein-Kramers equation
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Subdiffusion in the presence of an external force field can be described in phase space by the fractional
Klein-Kramers equation. In this paper, we explore the stochastic structure of this equation. Using a subordi-
nation method, we define a random process whose probability density function is a solution of the fractional
Klein-Kramers equation. The structure of the introduced process agrees with the two-stage scenario underlying
the anomalous diffusion mechanism, in which trapping events are superimposed on the Langevin dynamics.
We develop an efficient computer algorithm for visualization of fractional Klein-Kramers dynamics and
present some simulation results based on Monte Carlo techniques.
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I. INTRODUCTION

In the classical theory of Brownian transport the phase
space dynamics is described by the deterministic Klein-
Kramers equation [1-5]. In the high-friction limit it reduces
to the Fokker-Planck-Smoluchowski equation, whereas in
the low-friction-limit case one obtains the Rayleigh equation
describing the relaxation of the velocity probability density
function (PDF) toward the Maxwell distribution. Classical
Brownian transport is characterized by linear-in-time mean-
squared displacement in the force-free limit. However, in
various physical systems, it has been found that temporal and
spatial correlations cause anomalous transport with a corre-
sponding non-Gaussian PDF and nonlinear-in-time mean-
squared displacement. In [6,7], Metzler and Klafter intro-
duced the fractional Klein-Kramers equation (FKKE)
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describing both the velocity v and coordinate x of a particle
with mass m exhibiting subdiffusion in an external force field
F(x)=—®'(x). Here, 7 denotes the friction constant, kgT is
the Boltzmann temperature, and the factor 7 is the ratio of
the intertrapping time scale and the internal waiting scale [6].
The operator

1 d

lI-a - ' _ el
oD f(t)_r(a')dtfo(t $)*" fls)ds, 2)

0<a<l1, stands for the fractional derivative of the
Riemann-Liouville type [8], and it introduces memory ef-
fects to the system. The stationary solution of the FKKE (1)
is given by the Gibbs-Boltzmann equilibrium distribution
W, (x,v)=N exp{—BE}, where B=(kzT)~!, E=mv?*/2+®(x),
and N is the appropriate normalizing constant. For a=1 we
recover the standard Klein-Kramers equation. Superdiffusive
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transport in the framework of the Klein-Kramers equation is
described in detail in [9], whereas the case in which the
fractional derivative term acts only on the dissipative part of
the standard Klein-Kramers operator can be found in [10,11].
Additionally, the Lévy-flight approach to the Klein-Kramers
dynamics is discussed in [12].

The Klein-Kramers equation is fundamental in modeling
of particle escape over a barrier and many other physical
processes. Similarly, the FKKE plays a crucial role in inves-
tigating the variety of systems characterized by slow dynam-
ics. Equation (1) describes the multiple-trapping scenario, in
which the trapping events are superimposed on the Langevin
dynamics. In this scenario, the test particle moves according
to Brownian diffusion; however it is successively immobi-
lized in traps. The particle is released after some waiting
time drawn from the heavy-tailed probability density func-
tion w(f) ~ct~'7% It is assumed here that, following a trap-
ping event, the particle is released with the same position
and velocity that it had prior to the immobilization. The
immobilization-releasing scenario is in fact a combination of
the Langevin dynamics and trapping periods in a sequential
manner.

The paper is structured as follows. In Sec. II, by the sub-
ordination method, we recognize the explicit form of the
two-dimensional stochastic process standing behind Eq. (1).
In Sec. III we propose an efficient computer algorithm for
visualization of the fractional Klein-Kramers dynamics. We
show that our algorithm and Monte Carlo methods provide
tools for investigations of the FKKE. We end the paper with
a short summary and conclusions in Sec. IV.

II. UNDERLYING STOCHASTIC PROCESS

In what follows, we explore the stochastic structure of Eq.
(1). We show that the PDF P(x,v,?) of the two-dimensional
stochastic process

Y (1) = (X(S), V(S) 3)

is a solution of the FKKE (1). Here, the process (X(7), V(7))
is defined as the solution of the following two-dimensional
Itd stochastic differential equation:
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dV(7) = y(— V(D) + F();ET))>dT+ \ /Zyn%dB(T),

dX(7) = yV(7)dr, (4)

driven by the standard Brownian motion B(7) with mean O
and (B?*(7))=r. The subordinator S,, which is assumed to be
independent of B(7), is defined as

S,=inf{r:U(7) > t}. (5)

It is called the inverse-time a-stable subordinator. Here, U(7)
is the strictly increasing a-stable Lévy motion [13], i.e., the
a-stable process with Laplace transform (e *U(7)=¢ ™",
where 0 <a<1. Many interesting physical properties of S,
have been discussed in the papers [14—18]. Let us stress that
the role of S; is analogous to the role of the fractional opera-
tor ;D™ in Eq. (1). It originates from the multiple-trapping
events in the underlying continuous-time random walk sce-
nario, while the Brownian diffusion Eqs. (4) describe the
motion of the particle between consecutive trapping events.
The subordination of (X(7), V(7)) to S, via Eq. (3) results in
a combination of the Langevin dynamics and trapping peri-
ods.

Taking advantage of the total probability formula, we get
the result that the PDF P(x,v,7) of process (3) is given by

P(x,v,t):f fx,v,7)s(7,t)dT.
0

Here, by f(x,v,7) and s(7,f) we denote the PDFs of
(X(7), V(7)) and S,, respectively. Equivalently, in the Laplace
space, the above formula yields

ﬁ(x,v,k) = focf(x,,v, 78(rk)dr. (6)
0

Next, we find the expression for §(7,k). It is easy to verify
[17] that the relation

s(7,1) = Lu(t, 7)
aT

holds, where by u(z,7) we denote the PDF of the process
U(7) from definition (5). Consequently, we can calculate the
Laplace transform

- t a
S(7.k) =J e M—u(t,Ddt= ke ™",
0 ar
Using the above result in combination with (6), we get
P(x,v,k) = f 0, Dk e ™ dr =k fx,0,k%).  (7)
0

Now, since the process (X(7), V(7)) is given by (4), its PDF
Sf(x,v,7) obeys the equation
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Equivalently, in the Laplace space we have
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Finally, the above formula after the change of variables &
—k“ and in combination with (7) gives
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Inverting the Laplace transform, we obtain
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Thus, we have proved that the PDF P(x,v,t) of the process
(X(S,),V(S) is a solution of the FKKE (1). Comparing the
structure of the process (3) with the continuous-time random
walk scenario underlying the FKKE, we observe that the
subordinator S, is responsible for the subdiffusive behavior
of the particle (trapping events), whereas the Brownian dif-
fusion (4) governs the motion of the particle between the
trapping periods. A similar mechanism has been observed in
the case of the fractional Fokker-Planck equation [19-21].

III. NUMERICAL APPROACH

The previously derived stochastic representation of the
FKKE determines a simple algorithm for approximating
sample paths of the anomalous diffusion process correspond-
ing to (1). In our method, every trajectory of (X(S,), V(S,)) is
obtained as a superposition of sample paths of (X(7), V(7))
and S,. A similar approach to the numerical approximation of
the fractional Fokker-Planck dynamics was presented in re-
cent papers [20,21]. A different method based on the
continuous-time random walk scenario can be found in [22].

The proposed method of approximating sample paths of
(X(S5,),V(S,)) on the lattice {r,=iAr;i=0,1,...,N}, where
At=T/N and T is the time horizon, consists of two steps.

() In the first step we approximate the values
Sfo’sfl’ ,S,N of the subordinator S,. This part of the algo-
rithm is identical to the one introduced in [20]; however, for
completeness it is repeated here. We begin with approximat-
ing a realization of the strictly increasing a-stable Lévy mo-
tion U(7) on the mesh 7,=jA7, j=0,1,...,M (it is recom-
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FIG. 1. (Color online) Sample realizations of (a) the position
process X(S,), (b) the velocity process V(S,), and (c) the subordina-
tor S;. The constant intervals of the subordinator S,, representing the
trapping periods of the test particle, transfer to the processes X(S,)
and V(S,). Clearly, after a trapping event the particle is released
with the same position and velocity. The parameters are «=0.8, m
=kgT=7n=1, and F(x)=0.

mended to choose A7<Ar). Using the standard method of
summing increments of the process U(7), we get

U() =0,

U(m) = U(72) + Ar'eg,, (11)

where ¢; are the independent, identically distributed (i.i.d.)
totally skewed positive a-stable random variables. The pro-
cedure of generating realizations of §; is the following
[23-25]:

_sinfa(V+e))] ( cos[V—a(V+ cz)]>(1“")/a
7= eos(m)] W :

where ¢,=[cos(ma/2)]7"%, c,=/2, the random variable V

is uniformly distributed on (—#/2,7/2), and W has expo-
nential distribution with mean 1. The iteration (11) ends
when U(7) crosses the level T, i.e., when for some j,=: M we
get U(my_)) =T<U(7y). Since U(7) is strictly increasing,
such M always exists.

Now, for every element f; of the lattice {r,=iAt;i
=0,1,...,N}, we find the element 7; such that U(7;_;) <t
= U(7;), and finally, from definition (5), we get that in such a
case

(I) In the second step, our goal is to find
the approximated values (X(S,O),V(Sto)),(X(S,l),V(Stl)),...,
(X(S,N),V(S,N)) of the process (X(S,), V(S,)). We start by em-
ploying the classical Euler scheme to approximate the solu-
tion (X(7), V(7)) of the stochastic differential Eq. (4) on the
lattice {7,=kA7;k=0,1,...,L} (it is also recommended to
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choose AT7<<Ar). Here L is equal to the first integer that
exceeds the value S, /A7. From the Euler scheme [13] we
get

X(79) = V(7) =0,

V(7) = V(Ty) + 7(— V(o)) + —F(X(’Z"‘l))> A7

k T 1/2_
+ (2777LA7'> &,
m

X(7) = X(7i_y) + YV(To AT, (12)

for k=1,2,...,L. Here Ek are i.i.d. random variables with

standard normal distribution, Ek~N(O, 1). Recall that from
the first step of the algorithm already we have at our disposal
the approximations Siy2St,s -+ S, Now, since the realiza-
tions of (X(7), V(7)) are continuous functions, and since from
the iteration scheme (12) we have at our disposal the values
X(7), V(7)) , (X (7)), V(7)) .. ,(X(7,), V(7,)), we use the
standard linear interpolation in order to obtain
the approximate values (X(S,O),V(S,O)),(X(St]),V(S,l)),...,
(X(S,,), V(S; ). Thus, for every ¢; from the lattice {t;=iAt;i
=0,1,...,N}, we find such an index k that the condition 7,
SS,[S Ti41 holds true, and finally, through linear interpola-
tion, we get that

X(Tjir) = X(7)

Th+1 — Tk

X(Sti) = (Stl- - ?k) +X(Fk),

V(Ti1) = V(7))

Th+1 — Tk

v(s,) = (S, — 70 + V(7).
for i=0,1,...,N.

The above algorithm allows us to approximate sample
paths of (X(S,),V(S,)) for the whole range of the fractional
parameter « € (0, 1) and for an arbitrary force field F(x). The
typical trajectories of the process in the case F(x)=0 are
presented in Fig. 1. The constant intervals of the subordina-
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FIG. 2. (Color online) Phase-space diagrams of (a) the sample
path (X(S,),V(S,), and (b) the corresponding standard diffusion
(X(7), V(7). Both diagrams are identical, which confirms that the
motion of the particle between consecutive trapping events is gov-
erned by the Langevin dynamics. Parameters as in Fig. 1.
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FIG. 3. (Color online) Estimated PDFs P(x,v,f)—solutions of the FKKE (1). The estimations were performed on the basis of 10*
simulated trajectories of the process (X(S,), V(S,)) using the algorithm introduced in Sec. IIl. Parameters as in Fig. 1.

tor S,, representing the trapping periods of the test particle,
transfer to the processes X(S;) and V(S,). The initial assump-
tion that a trapped particle is released with the same position
and velocity that it had prior to the immobilization is evi-
dently satisfied by the sample paths in Fig. 1. However, the
consequence of this assumption is the violation of the
Newton-type relation (d/dr){X(z))=(V(z)) known from the
classical Brownian case. On the level of sample paths of the
process, this violation is manifested by the fact that during
the trapping periods [constant intervals of X(S,)] the velocity
process V(S,) is not equal to zero. Compare Figs. 1(a) and
1(b). The actual relationship between the mean position and
mean velocity in the fractional Klein-Kramers dynamics is
the following: (d/ dt)(X(St))=OD}_“7(V(S,)>. As explained in
[6,7], this violation of Newton’s law “is only due to the
additional waiting time averaging, which camouflages the
Newtonian, Langevin-dominated motion events.”

In Fig. 2 we present the phase-space diagrams of (a) the
sample path (X(S,),V(S,), and (b) the corresponding stan-
dard diffusion (X(7), V(7)). Both diagrams are identical. This
confirms that the motion of a particle between consecutive
trapping events is governed by the Langevin dynamics. Note
that phase space diagrams neglect the occurrence of trapping
periods.

Since a closed-form solution of the FKKE (1) is not
known, in order to estimate P(x,v,f) one can use the
introduced method of approximating sample paths of
(X(S,),V(S)). Figure 3 presents the evolution in time of the
PDF P(x,v,t) for three different time points in the case
F(x)=0. The results were obtained using the Rozenblatt-
Parzen kernel PDF estimator on the basis of 10* simulated
sample realizations of the process (X(S,), V(S))).

As the numerical investigations show, in the case of
the double-well potential ®(x)=x*/4—2x, the process
(X(S,),V(S,) reaches its stationary solution. In Fig. 4 we
present nine estimated quantile lines (10%,20%, ...,90%)
corresponding to the processes X(S,) and V(S,) obtained with
the help of Monte Carlo techniques. In both cases, the quan-
tile lines are asymptotically parallel, which confirms that the
stationary solution is reached as r— . The shape of the
quantile lines of X(S,) is typical for double-well potentials.
We observe two stable states at x==+2. Recall that a
p-quantile line, p € (0,1), for a stochastic process Y(¢) is a
function ¢,(t) given by the relationship Pr[Y(r)=gq,(1)]=p
[13]. In Fig. 5 we show both estimated and theoretical sta-
tionary solutions of the FKKE. The estimated PDF was con-

structed on the basis of 10* realizations of (X(S,), V(S,)) with
t=30. We see that there is a very good agreement between
the two PDFs. This confirms the correctness of the algorithm
used for approximating sample paths. It is worth emphasiz-
ing that analogous statistical methods and simulation tech-
niques can be applied to investigate the fractional Klein-
Kramers dynamics for arbitrary potentials ®(x) and with no
restrictions on the parameters of the model, especially for
any 0<a<l.

IV. CONCLUSIONS

We have introduced an algorithm for approximating
sample paths of the anomalous diffusion process described
by the FKKE (1). The algorithm is based on the derived
stochastic representation of the FKKE. The structure of the
stochastic process corresponding to Eq. (1) agrees with the
two-stage scenario underlying the anomalous diffusion

o N s

X(S)

A==

0 10 20 30

FIG. 4. (Color online) Exemplary sample paths (red lines) and
estimated quantile lines (blue lines) (10%,20%, ...,90%) corre-
sponding to the processes X(S,) and V(S,) in the presence of the
double-well potential ®(x)=x*/4-2x>. In both cases the quantile
lines are asymptotically parallel, which confirms that the stationary
solution is reached. The quantile lines of the position process X(S,)
are typical for the double-well potential with two stable states at
x==2. The results were obtained with the help of Monte Carlo
techniques on the basis of 10* simulated realizations. The param-
eters are @=0.9 and m=kgT=7n=1.
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mechanism, in which trapping events are superimposed onto
the Langevin dynamics. The constant intervals of the subor-
dinator S, are related to the trapping periods of the test par-
ticle, whereas the motion of the particle between consecutive
trapping events is governed by the Langevin dynamics de-
scribed by the Brownian diffusion (X(7),V(7)). We have vi-
sualized these facts in the included figures (Figs. 1 and 2).
The statistical Monte Carlo techniques presented here al-
low us to approximate solutions of the FKKE with no restric-

Theoretical
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FIG. 5. (Color online) Comparison of the es-
timated and theoretical stationary solution of the
FKKE (1) in the case of a double-well potential
with two stable states at x==2. The similarity
between the two PDFs confirms the correctness
of the algorithm used. The estimated PDF was
constructed on the basis of 10* simulated realiza-
tions of (X(S,), V(S,)) with r=30. Parameters as in
Fig. 4.

tions on the set of parameters of the model (Fig. 3). Addi-
tionally, we are able to examine the properties of the
anomalous diffusion in various external potentials. As an ex-
ample, we have numerically investigated the model with a
double-well potential and its asymptotic behavior (Figs. 4
and 5).

We hope that the results and statistical methods presented
here will contribute to further investigations and to a better
understanding of the fractional Klein-Kramers dynamics.
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